The increased length of the *b* cell edge (5.81 Å) in ardennite over that found in other aluminum silicates with octahedral chains along **b** (5.45-5.63 in zoisite, 5.57 in kyanite, 5.61-5.64 in epidote, 5.66 in staurolite, 5.75 in allanite) is due to the substitution of the larger Mg and Fe ions for Al in about half of the octahedra that have centers on the mirror planes (001).

As can be seen on Fig. 2, a nearly regular but empty octahedron around the point $\frac{1}{4}00$ shares a face with each of two Al octahedra and an edge with each of two Si tetrahedra. The average length of the remaining four edges is 2.86 Å (Table 7), very comparable to the edge length of the other filled octahedra. The reason that no cation, M, is found at the center is ascribed to the short Al(1)-Al(2) separation, which would lead to M-Al distances of only 2.18 Å.

We thank Professor J.D.H.Donnay for his continued interest in the work. The senior author wishes to thank Professor E. Hellner, Director of the Mineralogical Institute of the University of Marburg, for his hospitality during the summer of 1966 when she was working on this problem. We are indebted to Drs W. Fischer, H. Burzlaff, and A. Kutoglu of the same institution, who helped in many ways, especially with the computations. Dr A.J. Naldrett kindly provided the hand specimen (No. S-2183) from which we obtained our epidote crystal.

References

- BELOV, N. V. & RUMANOVA, I. M. (1953). C.r. Acad. Sci. URSS, 89, 853.
- DAUBEN, C. H. & TEMPLETON, D. H. (1955). Acta Cryst. 8, 841.
- DONNAY, G. (1965). Carnegie Inst. Wash. Year Book 64, 209.
- DONNAY, G. (1966). Carnegie Inst. Wash. Year Book 65, 294.
- GOSSNER, B. & STRUNZ, H. (1932). Z. Kristallogr. 83, 415.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1966). Personal communication; see also *Acta Cryst*. 21, 435.
- ITO, T., MORIMOTO, N. & SADANAGA, N. (1954). Acta Cryst. 7, 53.
- KARLE, I. L. & KARLE, J. (1963). Acta Cryst. 16, 969.
- KARLE, I. L. & KARLE, J. (1966a). Acta Cryst. 21, 860.
- KARLE, J. & KARLE, I. L. (1966b). Acta Cryst. 21, 849.
- LASAULX, A. VON (1876). Neues Jahrb. Mineral. p. 363.
- LASAULX, A. VON & BETTENDORFF, A. (1873). Neues Jahrb. Mineral. p. 124.
- LIEBAU, F. (1962). Naturwissenschaften, 49, 481.
- PISANI, F. (1873). C.r. Acad. Sci. Paris, 77, 329.
- PRANDTL, W. (1905). Z. Kristallogr. 40, 392.
- SEMET, J. & MOREAU, J. (1965). Ann. Soc. géol. Belgique, 88, 545.
- STRUNZ, H. (1935). Z. Kristallogr. 92, 402.
- ZAMBONINI, F. (1922). Att. Accad. Naz. Lincei, Rend., Ser. 5, 31, 147.

Acta Cryst. (1968). B24, 855

The Configuration at C(13) in Labdanolic and Eperuic Acids by an X-ray Crystal Structure Analysis of the *p*-Bromophenacyl Ester of Labdanolic Acid

BY KARIN BJÅMER,* GEORGE FERGUSON AND R.D. MELVILLE

Chemistry Department, University of Glasgow, Glasgow W. 2, Scotland

(Received 30 August 1967)

The crystal structure of the *p*-bromophenacyl ester of labdanolic acid, determined by three-dimensional X-ray analysis, establishes the common configuration for labdanolic and eperuic acids at C(13) as (S) (Prelog's notation). The crystals are monoclinic, space group P_{2_1} , with two molecules of $C_{28}H_{41}O_4Br$ in a unit cell of dimensions a=11.55, b=6.05, c=19.90 Å; $\beta=99.0^{\circ}$. The structure has been refined by least-squares methods to a final R of 11.4% for 1672 reflexions.

Introduction

Labdanolic acid, $C_{20}H_{36}O_3$, was first isolated by Cocker, Halsall & Bowers, 1956) from Spanish gum labdanum obtained from *Cistus ladaniferus* (rockrose). The structure of this new bicyclic diterpene hydroxyacid was determined in a subsequent paper (Cocker & Halsall, 1956) as (I), but the configuration at C(13) remained undetermined.

^{*} Present address: Division of Pure Chemistry, National Research Council, Ottawa 2, Canada.

Bory & Lederer (1957) assigned the (R) configuration to C(13) in labdanolic acid. Bigley, Rogers & Barltrop (1960) questioned this as it was based on molecular rotations where hydrogen bonding may be involved, but later accepted it in the mistaken belief that there is no intramolecular hydrogen bonding in methyl labdanolate and methyl 13-epilabdanolate. From subsequent infrared studies (Baker, Eglinton, Gonzalez, Hamilton & Raphael, 1962) with several compounds of the labdane type it is clear that intramolecular hydrogen bonding does occur. The C(13) configuration in labdanolic acid was therefore undefined. Graham & Overton (1964) showed that eperuic and labdanolic acids possess the same C(13) configuration whilst otherwise being antipodal and Overton & Renfrew (1967)* inferred by means of chemical degradation that the C(13) configuration in these acids is (S). This X-ray analysis was undertaken to establish unambiguously the C(13) configuration and the molecular geometry.

Crystal data

p-Bromophenacyl labdanolate, C₂₈H₄₁O₄Br, M = 521.4, m.p. 124–5°C. *Monoclinic*, $a = 11.55 \pm 0.01$, $b = 6.05 \pm 0.01$, $c = 19.90 \pm 0.02$ Å; $\beta = 99.0 \pm 0.2^{\circ}$. U = 1373 Å³. $D_m = 1.28$ g.cm⁻³ (by flotation in aqueous potassium iodide), Z = 2, $D_x = 1.26$ g.cm⁻³. F(000) = 552. Space group $P2_1$ (C₂², No. 4). Linear absorption coefficient for X-rays (Cu K α , $\lambda = 1.542$ Å) $\mu = 24.9$ cm⁻¹.

Experimental

Labdanolic acid (44 mg) was esterified with *p*-bromophenacyl bromide (38 mg). The ester was extracted with ether and recrystallized from choroform-light petroleum as well-formed needles. Elementary analysis gave: C, 64.52; H, 8.25%. $C_{28}H_{41}O_4Br$ requires C, 64.49; H, 7.89%.

Oscillation, Weissenberg and precession photographs were taken with a crystal mounted along the unique b axis with Cu $K\alpha$ radiation. The unit-cell parameters were measured from oscillation, zero-layer Weissenberg and precession photographs. The space group $(P2_1)$ was determined from the systematic absences (0k0 absent if k is odd) and from the knowledge of the molecule being optically active ($[\alpha]_D = -10^\circ$). Non-integrated three-dimensional intensity data were collected along the (needle) b axis from a crystal of dimensions $0.13 \times 0.13 \times 3.5$ mm³ with an equi-inclination Weissenberg camera using the multiple-film technique. Layers from k = 0 to k = 5 were obtained. With a calibrated wedge 1672 reflexions (53% of the 3137 reflexions possible within the copper sphere) were measured visually. The reflexions that were too weak to be measured were not included in any of the calculations. The data were corrected for Lorentz and polarization factors but no absorption corrections were made. In the initial stages of the structure determination the data were put on an approximate absolute scale by making $k\Sigma |\mathbf{F}_0| = \Sigma |F_c|$ for each layer. The layer-scale factors were later refined by least-squares methods.

Structure determination

Analysis in the h0l projection

* The configurational designations (R) and (S) should be interchanged in this paper except in §1. In structure was solved the ratio $\sum f_{H}^{2} / \sum f_{L}^{2}$ being (

The structure was solved by the heavy-atom method; the ratio $\Sigma f_H^2 / \Sigma f_L^2$ being 0.94 at $\sin\theta = 0$. A Patterson

Parameters refined	Cycle No.	Final (ΣwΔ²) 1458	Final $(R = \Sigma \Delta / \Sigma F_o)$ 20:4%	Final $(R' = \sum w \Delta^2 / \sum w F_o^2)$ 0.0920
+ layer-scale factors x, y, z, U_{ij} ($i, j = 1, 2, 3$)	7 15*	211	11.49/	0.0241
scale factor	7-15*	211	11.4%	0.0241

Table 1. Course of the refinement

* Corrections for $\Delta f', \Delta f''$ for Br were applied.

Br(1)

O(1)

O(2) O(3)

O(4) C(1) C(2) C(3)

C(4) C(5) C(6) C(7)

C(8)

C(9) C(10)

C(11)

C(12)

C(13) C(14)

C(15)

C(16)

C(17)

C(18) C(19)

C(20)

C(21)

C(22)

C(23)

C(24) C(25)

C(26)

C(27)

C(28)

synthesis was computed with data sharpened to point atom with respect to bromine. From the Harker peak at (2x, 2z) the Br-atom coordinates were deduced as x=0.218, z=0.184. In a structure-factor calculation with Br alone R was 60% and an electron-density projection calculated with the observed amplitudes and Br phase angles revealed the entire structure. When all the atoms were included in a structure-factor calculation R was 41%. The x and z coordinates for all the atoms were then refined with a minimum-residual program (Bhuiya & Stanley, 1963; Muir, 1967) and in five cycles R was lowered to 23%.

Three-dimensional analysis

In space group $P2_1$ the origin in the y direction is not fixed. Here the bromine atom was put at $y = \frac{1}{4}$ which in a three-dimensional electron-density distribution based on bromine phase angles and observed amplitudes results in pseudo-mirror planes parallel to (010) at $y=\frac{1}{4}, \frac{3}{4}$, etc. Only a few peaks were resolved from the pseudo-mirror planes in the first three-dimensional electron-density distribution, making it difficult to determine the y coordinates of the atoms relative to the Br atom. The two carbon atoms [C(6) and C(7)] from the decalin system which deviated most from $y = \frac{1}{4}$ were first selected and gradually in six further rounds of structure-factors and electron-density calculations all the atoms were resolved. R at this stage was 27%. During the structure determination an overall $U_{iso} =$ 0.05 Å^2 was assumed.

Refinement

Positional and temperature parameters as well as layer-scale factors were refined by block-diagonal leastsquares methods minimizing the expression

$$\sum_{hkl} \mathbf{w} (|F_o| - |F_c|)^2$$

The weighting scheme used was:

$$w = 1/(p_1 + |F_o| + p_2|F_o|^2 + p_3|F_o|^3)$$

where the *p*-parameters were varied during the refinement in order to minimize the variation of $w\Delta^2$ as a function of $|F_o|$. The final values are: $p_1 = 4.0$, $p_2 = 0.05$ and $p_3 = 0.0005$. In each cycle a shift factor of 0.8 was used. The course of the refinement is outlined in Table 1. After the isotropic refinement the data were put on a common scale using the refined layer-scale factors. Thereafter one overall scale factor was refined. No shifts were greater than 0.1σ in the coordinates and 0.2σ in the thermal parameters after the last cycle of the anisotropic refinement. In the polar space group $P2_1$ an error would be introduced in the y coordinate of the bromine atom unless anomalous-dispersion corrections are applied (Ueki, Zalkin & Templeton, 1966; Cruickshank & McDonald, 1967). The Weissenberg photographs were indexed in a right-handed system according to Peerdeman & Bijvoet (1956). Part of the absolute

A C 24B - 8

configuration of labdanolic acid is already known by synthesis from sclareol of established configuration (Bory & Lederer, 1957) and is the one used here. Anomalous-dispersion corrections were made for the bromine atom during the anisotropic refinement during which the Br-C(26) bond length changed from 1.96 to 1.91 Å.

Atomic form factors and the real and imaginary part of anomalous-dispersion corrections were taken from International Tables for X-ray Crystallography (1962).

At the conclusion of the refinement a difference Fourier synthesis was calculated; some diffuse maxima occured in positions stereochemically acceptable for hydrogen atoms but it was not possible to determine their coordinates.

The final coordinates and temperature parameters and their e.s.d.'s (derived from the least-squares normal equations) are listed in Table 2. The thermal parameters are values of U_{ij} in the expression:

$$\exp\left[-2\pi^2 (U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2U_{23}klb^*c^* + 2U_{31}lhc^*a^* + 2U_{12}hka^*b^*)\right].$$

Observed and calculated structure factors are listed in Table 3.

Superimposed sections parallel to (010) of the threedimensional electron-density distribution and their interpretation are shown in Fig. 1. Bond lengths and valency angles are shown in Fig.2., and the mean values of e.s.d.'s in bond lengths and angles are listed

Table 2(a) Fractional coordinates and e.s.d.'s

x/a	у/Ь	z/c
0.2116 ± 2	0.2500 ± 0	0.1843 + 1
1.2969 ± 11	0.3726 ± 21	0.6726 ± 5
0.8295 ± 9	0.2174 ± 22	0.4405 ± 5
0.7617 ± 9	0.4743 ± 18	0.5055 + 5
0.5859 ± 11	0.1923 ± 24	0.4924 + 7
1.0488 ± 10	0.2467 ± 27	0.8517 + 6
1.0354 ± 13	0.2394 ± 31	0.9288 ± 7
1.1531 ± 16	0.1681 ± 25	0.9715 ± 7
1.2616 ± 12	0.2959 ± 22	0.9612 ± 6
1.2660 ± 11	0.3136 ± 18	0.8823 ± 6
1.3734 ± 11	0.4362 ± 27	0.8664 ± 7
1·3861 ± 13	0.3894 ± 29	0.7886 ± 7
1.2807 ± 12	0.4624 ± 21	0.7400 ± 7
1·1698 <u>+</u> 12	0.3495 ± 21	0.7604 ± 6
1·1511 ± 11	0.3936 ± 20	0.8368 ± 6
1·0569 ± 13	0.3860 ± 25	0·7045 ± 7
1.0101 ± 13	0.1687 ± 23	0.6742 ± 7
0.9022 ± 12	0·1876 ± 26	0·6159 ± 7
0.9411 ± 12	0·3083 ± 27	0.5516 ± 7
0.8443 ± 13	0.3170 ± 30	0·4929 <u>+</u> 7
0·8517 <u>+</u> 16	-0.0374 ± 28	0·5959±8
1.2761 ± 15	0.7104 ± 33	0·7333 ± 8
1.2651 ± 16	0.5182 ± 27	0·9986 <u>+</u> 8
1.3737 ± 16	0.1694 ± 26	0·9967 ± 8
1.1205 ± 14	0·6376 ± 22	0·8460 <u>+</u> 7
0.6679 ± 14	0.5113 ± 30	0.4514 ± 7
0.5798 ± 12	0.3318 ± 26	0·4460 ± 7
0.4892 ± 11	0·3157 ± 27	0·3831 ± 7
0.4193 ± 15	0.1213 ± 33	0·3688 ± 8
0.3393 ± 16	0.1043 ± 30	0.3128 ± 8
0.3235 ± 11	0.2879 ± 37	0.2649 ± 6
0.3891 ± 13	0.4663 ± 36	0.2769 ± 8
0·4699 <u>+</u> 13	0·4891 ± 31	0·3347 ± 8

Table 2(b). Anisotropic temperature parameters and e.s.d.'s($Å^2$)

	U_{11}	U_{22}	U_{33}	2 <i>U</i> ₂₃	$2U_{31}$	$2U_{12}$
Br(1)	0·1071 15	0·1667 28	0·0871 12	0·0213 34	-0.0555 22	-0.0988 37
O(1)	0·1101	0·0601	0·0597	0·0002	0·0397	0·0015
	91	78	59	107	122	134
O(2)	0∙0790 66	0·0662 77	0·0614 53	-0.0344 113	-0.0227 94	0·0353 124
O(3)	0·0773	0·0415	0·0628	-0.0321	-0.0094	0·0146
	68	66	56	97	97	105
O(4)	0·0887	0·0704	0·1040	0·0623	-0·0191	-0.0269
	78	90	85	148	133	139
C(1)	0·0423 63	0·0472 91	0·0617 69	-0.0285 148	0·0103 105	-0.0060 132
C(2)	0·0681	0·0504	0·0653	-0.0069	0·0200	-0.0242
	83	93	77	157	128	155
C(3)	0·0995	0·0344	0·0572	0·0031	0·0292	-0.0053
	116	94	78	130	157	161
C(4)	0·0745	0·0136	0·0611	0·0020	-0.0224	-0.0078
	81	73	71	122	120	128
C(5)	0∙0567	0·0040	0·0549	-0.0072	0·0029	0·0026
	68	66	62	98	105	105
C (6)	0·0428	0·0559	0·0641	-0.0030	-0.0177	-0.0035
	71	103	82	142	122	129
C (7)	0·0532	0·0628	0·0613	0·0040	0·0210	-0.0251
	80	106	81	146	133	146
C(8)	0∙0593 78	0·0122 75	0·0694 80	-0.0002 117	0·0287 127	0·0036 117
C(9)	0·0592	0·0190	0·0550	0·0053	-0.0142	0·0072
	75	76	69	109	114	113
C(10)	0·0468	0·0159	0·0507	0.0013	0.0097	0·0031
	66	68	64	104	104	101
C(11)	0·0633	0·0332	0·0576	0·0007	-0.0062	0·0114
	84	81	73	123	129	128
C(12)	0·0728	0·0291	0·0542	0·0020	-0.0024	- 0.0060
	87	84	70	116	127	133
C(13)	0∙0591	0·0453	0·0551	-0.0118	-0.0155	-0.0158
	78	97	70	129	119	134
C(14)	0·0563	0·0485	0·0585	-0.0024	0·0035	-0.0076
	76	95	72	133	117	141
C(15)	0·0656	0·0614	0·0551	0·0046	0·0142	-0.0053
	85	106	73	143	129	159
C(16)	0·0981	0·0403	0·0710	-0.0022	-0.0091	-0.0749
	117	103	90	151	166	183
C(17)	0·0891	0·0573	0·0724	0.0119	0·0478	-0.0407
	110	117	92	170	165	189
C(18)	0·1027 124	0·0238 85	0·0653 84	-0.0251 132	-0.0099 161	-0.0170 161
C(19)	0·1071	0·0318	0·0703	0·0308	0·0119	0·0300
	128	100	93	145	173	171
C(20)	0·0887	0·0119	0·0561	-0.0140	-0.0006	0·0149
	100	73	72	110	137	135
C(21)	0·0677 92	0·0568 103	0·0587 78	0·0071 149	-0.0088 134	-0.0041 160
C(22)	0·0496	0·0479	0∙0646	0·0179	0·0002	0·0125
	70	95	78	137	120	130
C(23)	0·0503	0·0510	0·0597	0·0059	0·0223	0·0251
	71	99	73	134	115	137

Table 2(b) (cont)

			,	
$U_{11} \\ 0.0727 \\ 104$	U ₂₂ 0·0729 122	U ₃₃ 0·0674 92	$2U_{23} - 0.0015$ 175	
0∙0691	0·0586	0·0705	0·0261	
95	104	90	163	
0·0455	0·1169	0·0431	0·0244	
68	156	60	177	
0·0495	0·0869	0·0730	0·0317	
81	138	92	184	
0·0609	0·0579	0·0727	0·0178	
89	105	92	158	
	$U_{11} \\ 0.0727 \\ 104 \\ 0.0691 \\ 95 \\ 0.0455 \\ 68 \\ 0.0495 \\ 81 \\ 0.0609 \\ 89$	$\begin{array}{cccc} U_{11} & U_{22} \\ 0.0727 & 0.0729 \\ 104 & 122 \\ 0.0691 & 0.0586 \\ 95 & 104 \\ 0.0455 & 0.1169 \\ 68 & 156 \\ 0.0495 & 0.0869 \\ 81 & 138 \\ 0.0609 & 0.0579 \\ 89 & 105 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Fig. 1. Superimposed sections parallel to (010) of the threedimensional electron-density distribution and their interpretation showing the molecular geometry and the numbering scheme. The contours start at $1 \text{ e.} \text{Å}^{-3}$ and are drawn at intervals of $1 \text{ e.} \text{Å}^{-3}$ except around the Br atom, where the intervals are $5 \text{ e.} \text{Å}^{-3}$.

The two six-membered rings in the decalin system, *trans*-fused to each other, adopt slightly distorted chair conformations. The four carbon atoms of ring

(1956).

chair conformations. The four carbon atoms of ring A [C(2), C(3), C(5) and C(10)] are coplanar and the carbon atoms C(1) and C(4) are displaced below and above this plane by 0.66 and 0.61 Å respectively (Table 6). In a regular cyclohexane chair these two atoms would each have been displaced by 0.73 Å (calculated value). In ring B the atoms C(5), C(7), C(8) and C(10) are coplanar and the two atoms C(6) and C(9) are respectively above and below this plane by 0.73 and 0.68 Å (Table 6). These two cyclohexane planes are not parallel but make a dihedral angle of 10° with each other. The distortions are probably mainly due to bending of the axial methyl groups [C(17), C(18) and C(20)] away from each other in order to relieve strain caused by repulsive forces. In a regular cyclohexane chair the nonbonded distances between C(18) and C(20) and between C(17) and C(20) would have been 2.52 Å; these distances are here increased to 3.31 and 3.12 respectively (the $C(4) \cdots C(10)$ and $C(8) \cdots C(10)$ non-bonded distances are 2.67 and 2.65 Å). The van der Waals methyl-methyl distance is 4.0 Å (Pauling, 1960). A similar distance between two axial methyl groups is observed for instance in a taxadiene-tetraol derivative (3.16 Å) (Bjåmer, Ferguson & Robertson, 1967). As a consequence of this intramolecular overcrowding, the angles C(5)C(4)C(18) (115°), C(9)C(8)C(17) (116°) and C(5)C(10)C(20) (115°) are significantly greater than tetrahedral while the other angles at C(4), C(8) and C(10) (fully substituted atoms) are tetrahedral or slightly smaller. The increase of the valency angles

 $2U_{12}$

0.0069

-0.0093

-0.0033

-0.0258

-0.0073

179

164

181

166

164

in Table 4. Some intramolecular contacts and intermolecular contacts <4.0 Å are shown in Tables 5(*a*) and 5(*b*).

 $2U_{31}$ 0.0246

0.0287

-0.0519

-0.0254

0.0127

159

148

106

136

147

Discussion Since part of the absolute configuration is known [by

synthesis of labdanolic acid from sclareol of established configuration (Bory & Lederer, 1957)] this X-ray analysis of *p*-bromophenacyl labdanolate unambiguously establishes that the configuration at C(13) is (S) (II) (Cahn, Ingold & Prelog, 1956) and consequently it is (S) also for labdanolic (III) and eperuic (IV) acids. It also confirms the validity of structure (I) proposed for labdanolic acid by Cocker & Halsall Table 3. Observed and calculated structure factors

234507891112141611202 00000000000000000000000000000000	46124 = 457476577777777777777777777777777777777	59449176846111763805283654161198789936215449436050864880599848406779999955768036498641907468287994918578818985565471661899898989898989898989898989898989898	96880288669687708713288223852238528322385861648327117924648323861687834454767576892578067834213262116244913534177774667682768926118721172612100971888625773385978	901123456789232000000000000111111111111111111111111	22141212442699725244449552444495523441342219124114465535412531541253154125315412531243765535414555128651528651551265551652315425611212223991435521445551121222391241255214442555214545551255231542555125523154255512552315425551255231542555125523154555523154555523154555523154555523154555231545555231545555231545555231545555231545555231545555231545555231545555231545555231545555231545555231545555231545555231545555523154555523154555552315455555355553	911121415158912125461712546171255612475091111111112122251511111111212255321474549512254247499112111111111111111111111111111111			198214345675951123456769214234567692142345679214234567591212345675951123456759214345677777777777777777777777777556665666666	727312183498841030684103064199312882871455453677544834828714759413593180597139413507167771965539216285853729116253924912533576777648548584565524

860

							Та	able	3 (cont.)							
H 222229123156789123145678912322222222222222222222222222222222222	Pol 271 3251 275.1 361 5.175.4 5.175.4 2894 2894 2894 2894	Pol 3.7 4.65 4.50 2.60 50.07 34.1 50.09 286.98 200.98 200.98	L 8902343642344575 K 2 2 2 2 3 4 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 7	Po 1874 028972942	Po 117772221557645	L 89011235781238	To Pol 98-55 182216-4 58-4 3-68-4 13-68 13-66 13-66 13-66 13-55 13-56 13-55 13-5	able . 101 9.9 17.2 1	3 (<i>cont</i> . H K L 4 3 -9 4 3 -11 4 3 -14 4 3 -17 5 3 -13 5 3 -23 5 3 -6) F0 8.9 3.1 4.2 8.2 10.7 3.9 5.7 3.9 5.7 3.9 16.7 14.2 10.7	Pa 6126018580566	L 151 234 578 9011 K 4444444444 R 2333333333333333333333333333333333333	Po 4.1 10.8 12.7 10.7 5.66 8.7 8.1 9.9 20.9 4.4 7.7 7	Fe 3.770 99.74 11.89 10.72 1	L 56778912251-2745 K 44444444444	Po 10.6 12.8 14.8 7.1 5.5 7.3 9.3 13.9 13.9	P 9223093474011
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	* 007812146152 04 007012144567 4 04 0070092011 4 00070010 00074 0074 0070010000000000			<pre>NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN</pre>			374444444455709212171274672112874344444444444444444444444444444444444			00000077777777888888880000000000000000	1055192142045443557444636353545453734075452839893823724555665555741540555555555555555555555555555555	

around the atoms adjacent to C(4), C(8) and C(10) from the tetrahedral angle can also be attributed to the bending of the axial methyl groups.

The carbon atoms C(9), C(11), C(12), C(13) and C(16) form a fully extended and approximately planar carbon chain (Table 6.)

0(2)

0(1)

116

110

112

′110

11

9

115

5

B

108

6

109

113

119

15

14

131

8

ઝ

7

Fig. 2. (a) Bond lengths. (b) Bond angles.

The ester group [O(2),O(3),C(14),C(15)] and carbon atom C(21) are planar within experimental errors (the r.m.s. distance is 0.021 Å) (Table 6). The dihedral angle between the ester group and the extended carbon chain is 41°. A Newman projection down the C(14) – C(13) bond shows that C(12) is *anti* to C(15) (Fig. 3.) The dihedral angles are marked in the Figure. Mathieson (1965), from a survey of a few crystal structures and from energy considerations, has suggested that for

Table 4. Mean values of e.s.d.'s for bond lengths and angles

0	
Bond	e.s.d.
C-C (aromatic)	0·025 Å
C-C (non aromatic)	0.050
C-0	0.019
Br-C	0.013
Angle at	e.s.d.
Aromatic atoms	1.5°
Single-bonded atoms	1.1
Double-bonded non-aromatic atoms	1.3

Tabl	le 5((a).	. Some	intramol	'ecular	contacts l	ess tl	han 4·	0 /	3
------	-------	------	--------	----------	---------	------------	--------	--------	-----	---

$C(4) \cdots C(10)$	2·67 Å
$C(8) \cdots C(10)$	2.65
$C(20) \cdots C(17)$	3.12
$C(20) \cdots C(18)$	3.31
$C(20) \cdots C(1)$	2.52
$C(20) \cdots C(9)$	2.57
$C(20) \cdots C(5)$	2.61
$C(18) \cdots C(3)$	2.50
$C(18) \cdots C(5)$	2.63
$C(17) \cdots C(7)$	2.48
$C(17) \cdots C(9)$	2.60
$C(18) \cdots C(19)$	2.46
$C(16) \cdots C(15)$	2.96
$C(16) \cdots O(2)$	3.44
$C(16) \cdots O(3)$	3.65
$C(16) \cdots O(4)$	3.69
$C(14) \cdots C(11)$	3.17
$C(14) \cdots O(2)$	3.61
$C(15) \cdots C(22)$	3.05
$C(15) \cdots O(4)$	3.08
$O(4) \cdots O(3)$	2.63
$O(4) \cdots O(2)$	3.15
$O(4) \cdots C(24)$	2.91
$C(21) \cdots C(28)$	3.00

Fig. 3. A Newman projection down the C(14)-C(13) bond with the relevant dihedral angles.

Table 5(b). Intermolecular contacs less than 4.0 Å

Atom A Atom B Br $\cdots C(20)$ $O(1) \cdots O(2)$ $O(1) \cdots C(21)$ $O(1) \cdots C(28)$ $O(1) \cdots C(24)$ $O(1) \cdots C(23)$ $O(2) \cdots C(17)$	Equivalent position* of atom B II II II II II II II	Cell of atom B (0, -1, 0) (1, 0, 0) (1, -1, 0) (1, -1, 0) (1, 0, 0) (1, -1, 0) (1, -1, 0)	Distance 3.85 Å 3.25 3.37 3.58 3.81 3.92 3.49
$O(2) \cdot \cdot \cdot C(14)$	II	(1, -1, 0)	3.61
$O(2) \cdots C(11)$	II	(1, -1, 0)	3.91
$O(2) \cdot \cdot \cdot C(8)$	II	(1, -1, 0)	3.94
$O(3) \cdots C(16)$	I	(0, 1, 0)	3.53
$O(3) \cdots C(24)$	II	(0, 0, 0)	3.62
$O(4) \cdots C(22)$	II	(0, -1, 0)	3.27
$O(4) \cdots C(21)$	П	(0, -1, 0)	3.48
$O(4) \cdot \cdot \cdot C(23)$	II	(0, -1, 0)	3.58
$O(4) \cdot \cdot \cdot O(4)$	II	(0, -1, 0)	3.66
$O(4) \cdot \cdot \cdot O(4)$	II	(0, 0, 0)	3.66
$O(4) \cdot \cdot \cdot C(24)$	II	(0, 0, 0)	3.80
$O(4) \cdots C(28)$	II	(0, -1, 0)	3.81
$C(1) \cdots C(20)$	Ι	(0, -1, 0)	3.78
$C(16) \cdots C(25)$	II	(0, -1, 0)	3.76
$C(16) \cdots C(26)$	JI	(0, -1, 0)	3.83
$C(16) \cdots C(24)$	11	(0, -1, 0)	3.90
$C(17) \cdots C(28)$	II	(1, 0, 0)	3.81
$C(17) \cdots C(23)$	11	(1, 0, 0)	3.89
$C(21) \cdots C(24)$	II	(0, 0, 0)	3.93
$C(25) \cdots C(27)$	I	(0, -1, 0)	3.99
* The equivale	ent positions ar	$\begin{array}{c} \text{re: } I(x, \\ II(1-x)^{\frac{1}{2}} + \end{array}$	y, z)

Atom A is in equivalent position I in the cell (0, 0, 0).

esters involving primary alcohols the two hydrogen atoms of the alcohol α -carbon [here C(21)] are usually in a staggered relation to the double-bonded oxygen of the ester group [here O(2)]. This would have required plane (IV) [defined by the atoms O(2), O(3), C(14), C(15 and C(21) and plane (V) [defined by the atoms C(21), C(22), C(23) and O(4)] (see Table 6) in this structure to be coplanar. The arrangement is here quite different since the planes make a dihedral angle of 79° with each other and O(2) is approximately *anti* to one of the C(21)-hydrogen atoms.

The phenyl group and carbon atom C(22) are coplanar (Table 6); the bromine atom is out of this plane by 0.055 Å. The atoms C(21), C(22), C(23) and O(4) (Table 6) are in a plane which is rotated about the C(23) – C(22) bond so that the dihedral angle with the aromatic plane is 12°. Non-zero dihedral angles between such planes are not uncommon (e.g. 9° in a *p*-bromobenzoate derivative of taxadiene-tetraol (Bjåmer, Ferguson & Robertson, 1957), 9° in potassium hydrogen di-*p*-chlorobenzoate (Mills & Speakman, 1963) and 3·3° in *p*-nitrobenzoic acid (Sakore & Pant, 1966).

Most of the bond lengths [Fig. 2(*a*)] agree within experimental errors with accepted values. However, the Br – C(26) bond $(1.912 \pm 0.013 \text{ Å})$ is longer than that reported by Sutton (1965) $(1.85 \pm 0.01 \text{ Å})$. The C(8) – O(1) bond is also long compared with the accepted C–O single bond distance of $1.426 \pm 0.005 \text{ Å}$ (Sutton, 1965).

In un-ionized carboxylic groups two of the angles are usually greater than 120° and one approximately tetrahedral (Hahn, 1957). The angles around C(15) conform approximately to this pattern but the angle O(2)C(15)O(3) is smaller than expected and close to 120° .

From infrared measurements for several compounds of the labdane type (methyl labdanolate; labdane- 8α , 15-diol monoacetate and labdane- 8α , 15-diol) in very dilute solutions in carbon tetrachloride, intramolecular hydrogen bonding involving 'closure' of a 'ten-membered ring (*i.e.* an $O(1)-H\cdots O(2)$ hydrogen bond) has been reported (Baker *et.al.*, 1962). There is no such intramolecular hydrogen bond in this crystal structure. The hydrogen atom of the hydroxyl group could not be located from a difference Fourier synthesis but it is probably involved in an extremely weak intermolecular hydrogen bond of the type $O-H\cdots O$, the distance $O(1)\cdots O(2)$ being $3\cdot 246 \pm 0.017$ Å. It is probable that the hydrogen bond is linear and that the hydrogen is

			Table 6. Least-	squares planes		
Pla (Rin C(2) C(3) C(5) C(10)	ane I ng A) -0.005 0.005 -0.005 0.005	Plane II (Ring B) C(7) 0.012 C(8) -0.011 C(10) 0.011 C(5) -0.011	Plane III (Carbon chain) C(9) 0.018 C(11) -0.016 C(12) -0.020 C(13) 0.018	Plane IV (Ester group) O(2) - 0.005 O(3) - 0.034 C(14) 0.022 C(15) - 0.010 C(15) - 0.020	Plane V (Carboxyl group) C(21) - 0.005 C(22) 0.017 C(23) - 0.005 O(4) - 0.007	Plane VI (Phenyl ring) C(22) - 0.008 C(23) 0.008 C(24) - 0.002 C(25) 0.001
				C(21) = 0.028		$\begin{array}{c} C(26) & 0.003 \\ C(27) & -0.015 \\ C(28) & 0.013 \end{array}$
			Atoms out	of plane		
C(1) C(4)	-0.659 0.609	$\begin{array}{ccc} C(6) & 0.732 \\ C(9) & -0.678 \end{array}$	C(16) -0.184 C(6) 0.066	$\begin{array}{c} C(22) & -1.271 \\ C(13) & -1.394 \end{array}$	O(3) - 0·289	$\begin{array}{rrr} Br & -0.055 \\ O(4) & 0.162 \\ C(21) & -0.305 \end{array}$
	-			•		

Equations for the least-squares planes (X', Y, Z') in Å are referred to the orthogonal axes a', b, c:

Plane I :	0·079 X'	+0.889 Y	+0.451 Z' =	9∙740 Å
Plane II :	0·167 X'	+0.938 Y	+0.305 Z' =	8.857
Plane III:	0.601 X'	+0.073 Y	-0.796 Z' =	-2.218
Plane IV:	0·514 X'	+0.695 Y	-0.502 Z' =	2.130
Plane V :	-0.611 X'	+0.571 Y	+0.549 Z' =	1.392
Plane VI:	-0.691 X'	+0.395 Y	+0.605 Z' =	0.976

Fig. 4. A packing diagram viewed along the b axis. The suggested extremely weak hydrogen bond is marked with a broken line.

located on the line connecting O(1) and O(2) since the angle C(8)O(1) \cdots O(2) is 106 $\cdot 7 \pm 0.8^{\circ}$. The arrangement of the molecules along the *b* axis can be seen in Fig. 4 and the suggested hydrogen bond is marked with a dotted line. There are no other unusually short intermolecular distances [Table 5(*b*)].

We wish to thank Dr K.H.Overton for suggesting the problem and for helpful discussions, and Professor J. Monteath Robertson, C.B.E., F.R.S., for his encouragement. The computing was carried out on the Glasgow University KDF9 computer with programs devised by Professor D.W.J.Cruickshank, Drs K.W. Muir and J.G.Sime, and D.McGregor, R.Pollard and J.G.F.Smith. Financial support from NATO and Hoffmann La-Roche (to K.B.) and from the Science Research Council (to R.D.M.) is gratefully acknowledged.

References

- BAKER, A. J., EGLINTON, G., GONZALEZ, A. G., HAMILTON, R. J. & RAPHAEL, R. A. (1962). J. Chem. Soc. p. 4705.
- BHUIYA, A. K. & STANLEY, E. (1963). Acta Cryst. 16, 981.
 BIGLEY, D. B., ROGERS, N. A. & BARLTROP, J. A. (1960).
 J. Chem. Soc. p. 4613.
- BJÅMER, K., FERGUSON, G. & ROBERTSON, J. M. (1967). J. Chem. Soc. In the press.

- BORY, S. & LEDERER, E. (1957). Croat. Chem. Acta, 29, 157.
- CAHN, R. S., INGOLD, C. K. & PRELOG, V. (1956). Experientia, 12, 81.
- COCKER, J. D. & HALSALL, T. G. (1956). J. Chem. Soc. p. 4262.
- COCKER, J. D., HALSALL, T. G. & BOWERS, A. (1956). J. Chem. Soc. p. 4259.
- CRUICKSHANK, D. W. J. & MCDONALD, W. S. (1967). Acta Cryst. 23, 9.
- GRAHAM, E. M. & OVERTON, K. H. (1964). J. Chem. Soc. p. 126.
- HAHN, T. (1957). Z. Kristallogr. 109, 438.
- International Tables for X-ray Crystallography (1962). Vol. III, pp. 214, 202. Birmingham: Kynoch Press.
- MATHIESON, A. MCL. (1965). Tetrahedron Letters, No. 46, 4137.
- MILLS, H. H. & SPEAKMAN, J. C. (1963). J. Chem. Soc. p. 4355.
- MUIR, K. W. (1967). Ph. D. Thesis, Univ. of Glasgow.
- OVERTON, K. H. & RENFREW, A. J. (1967). J. Chem. Soc. (C). p. 931.
- PAULING, L. (1960). The Nature of the Chemical Bond. Oxford Univ. Press.
- PEERDEMAN, A. F. & BIJVOET, J. M. (1956). Acta Cryst. 9, 1012.
- SAKORE, T. D. & PANT, L. M. (1966). Acta Cryst. 21, 715.
- SUTTON, L. E. (1965). Special Publication No. 18. London: The Chemical Society.
- UEKI, T., ZALKIN, A. & TEMPLETON, D. H. (1966). Acta Cryst. 20, 836.

Acta Cryst. (1968). B24, 865

Die Röntgenstrukturanalyse des Bullvalens

VON A. AMIT, R. HUBER UND W. HOPPE

Abteilung für Röntgenstrukturforschung am Max-Planck-Institut für Eiweiss- und Lederforschung, München und Physikalisch-Chemisches und Elektrochemisches Institut der Technischen Hochschule München, Abteilung für Strukturforschung, 8 München 15, Schillerstrasse 44–46, Deutschland

(Eingegangen am 28. August 1967)

Tricyclo[$3\cdot 3\cdot 2\cdot 0^{4.6}$]deca-2,7,9-triene (C₁₀H₁₀), bullvalene, crystallizes in the monoclinic group $P2_1/c$. The unit cell contains four molecules. The X-ray structure analysis was performed by the convolution molecule method. The atomic parameters were refined by three-dimensional Fourier and difference-Fourier syntheses and by least-squares calculations. In contrast to its behaviour in solution, bullvalene shows no valence-isomerization in the crystalline state.

Einleitung

Die Valenzisomerisierung von Bullvalen wurde von Doering & Roth (1963) vorausgesagt. Die Synthese des Bullvalens gelang Schröder (1964) und die NMR-Spektren (Merényi, Oth & Schröder, 1964) bestätigen diese Voraussage.

Bullvalen ist ein extremes Beispiel für Valenzisomerisierung. Jede Cope-Umlagerung (z.B. Ringschluss zwischen den Atomen C(9) und C(3) und Aufheben der Bindung zwischen C(1) und C(7) (Fig.1) ergibt wieder Bullvalen. Insgesamt sind 1209600 strukturgleiche Isomere möglich. Bei einer Temperatur von 15° in Lösung vollziehen sich die Umlagerungen schon so rasch, dass die NMR-Signale der chemisch verschiedenen Protonen zu einem breiten Signal verschmieren (Merényi, Oth & Schröder, 1964). Das Ziel unserer Arbeit war, durch die Röntgenstrukturanalyse etwas über das Verhalten des Bullvalens im kristallinen Zustand zu erfahren.*

Die Röntgenstrukturanalyse eines Silber-Borfluorid-Bullvalenkomplexes (Newton & Paul, 1966) bei 4° zeigt keine Valenzisomerisierung. Allerdings könnte hierfür die Komplexbindung verantwortlich sein (Allerhand & Gutowsky, 1965).

^{*} Das Ergebnis dieser Strukturanalyse wurde auf der 9. Diskussionstagung der Sektion für Kristallkunde der Deutschen Mineralogischen Gesellschaft in Bonn (24.4. 1967) vorgetragen (Amit, A., Brandt, F., Brodkerr, N., Gieren, A., Hädicke, E., Hoppe, W., Huber, R. & Röhrl, M., Referate, S. 53).